|
|
|
|
ALGUNOS DE LOS TEMAS VISTOS EN EL 2009 |
|
|
|
|
|
|
|
|
|
|
|
Vamos a estudiar un movimiento llamado MAS, Movimiento Armónico Simple Para ello, empezaremos viendo una serie de definiciones sencillas:
Movimiento periódico: un movimiento se dice periódico cuando a intervalos iguales de tiempo, todas las variables del mivimiento (velocidad, aceleración, etc.), toman el mismo valor.
Movimiento oscilatorio: Son los movimientos periódicos en los que la distancia del móvil al centro, pasa alternativamente por un valor máximo y un mínimo.
Movimiento vibratorio: Es un movimiento oscilatorio que tiene su origen en el punto medio, de forma que las separaciones a ambos lados, llamadas amplitudes, son iguales.
Movimiento vibratorio armónico simple: es un movimiento vibratorio con aceleración variable, producido por una fuerza que se origina cuando el cuerpo se separa de su posición de equilibrio.
Un resorte cuando lo separamos de su posición de equilibrio, estirándolo o comprimiéndolo, adquiere un movimiento vibratorio armónico simple, pues la fuerza recupperadora de ese resorte es la que genera una aceleración, la cual le confiere ese movimiento de vaivén.
|
Observando el movimiento del resorte, vemos que se desplaza entre dos puntos, desde la máxima compresión hasta la máxima elongación, pasando por un punto medio, de equilibrio. La distancia desde el punto medio a cualquiera de los extremos la llamamos AMPLITUD y la representamos por A.
La posición que ocupa la bola roja en cada momento con respecto al punto central la conocemos como ELONGACIÓN, x.
El tiempo en realizar una oscilación completa es el PERÍODO, representado por T y medido en segundos.
La FRECUENCIA es el número de oscilaciones por segundo que realiza y la representamos por n.
|
PENDULO: Llamamos péndulo a todo cuerpo que puede oscilar con respecto de un eje fijo.
Péndulo ideal, simple o matemático: Se denomina así a todo cuerpo de masa m (de pequeñas dimensiones) suspendido por medio de un hilo inextensible y sin peso. Estas dos últimas condiciones no son reales sino ideales; pero todo el estudio que realizaremos referente al péndulo, se facilita admitiendo ese supuesto .
Péndulo físico: Si en el extremo de un hilo suspendido sujetamos un cuerpo cualquiera , habremos construido un péndulo físico. Por esto, todos los péndulos que se nos presentan (columpios, péndulo de reloj, una lámpara suspendida, la plomada) son péndulos físicos.
Oscilación - Amplitud - Período y Frecuencia:
A continuación estudiaremos una serie de procesos que ocurren durante la oscilación de los péndulos y que permiten enunciar las leyes del péndulo.
Daremos previamente los siguientes conceptos:
Longitud del péndulo (l) es la distancia entre el punto de suspensión y el centro de gravedad del péndulo.
Oscilación simple es la trayectoria descrita entre dos posiciones .
Reflexión de la luz
Cuando un rayo de luz que se propaga a través de un medio homogéneo encuentra en su camino una superficie bien pulida, se refleja en ella siguiendo una serie de leyes. Este fenómeno es conocido como reflexión regular o especular.
Se llama plano de incidencia al plano formado por el rayo incidente y la normal (es decir, la línea perpendicular a la superficie del medio) en el punto de incidencia (Ver applet). El ángulo de incidencia es el ángulo entre el rayo incidente y la normal. El ángulo de reflexión es el que se forma entre el rayo reflejado y la misma normal.
espejos planos:
|
Un espejo plano es una superficie plana muy pulimentada que puede reflejar la luz que le llega con una capacidad reflectora de la intensidad de la luz incidente del 95% (o superior) . Los espejos planos se utilizan con mucha frecuencia. Son los que usamos cada mañana para mirarnos. En ellos vemos nuestro reflejo, una imagen que no está distorsionada.
|
¿Cómo se hacen?Cuando los pueblos antiguos lograron dominar la metalurgia, hicieron espejos puliendo superficies metálicas (plata).Los espejos corrientes son placas de vidrio plateadas. Para construir un espejo se limpia muy bien un vidrio y sobre él se deposita plata metálica por reducción del ión plata contenido en una disolución amoniacal de nitrato de plata. Después se cubre esta capa de plata con una capa de pintura protectora. El espejo puede estar plateado por la cara anterior o por la posterior, aunque lo normal es que esté plateada la posterior y la anterior protegida por pintura. La parte superior es de vidrio, material muy inalterable frente a todo menos al impacto ¿que imagenes dan?Una imagen en un espejo se ve como si el objeto estuviera detrás y no frente a éste ni en la superficie. (Ojo, es un error frecuente el pensar que la imagen la vemos en la superficie del espejo).El sistema óptico del ojo recoge los rayos que salen divergentes del objeto y los hace converger en la retina.El ojo identifica la posición que ocupa un objeto como el lugar donde convergen las prolongaciones del haz de rayos divergentes que le llegan. Esas prolongaciones no coinciden con la posición real del objeto. En ese punto se forma la imagen virtual del objeto.La imagen obtenida en un espejo plano no se puede proyectar sobre una pantalla, colocando una pantalla donde parece estar la imagen no recogería nada. Es, por lo tanto virtual, una copia del objeto "que parece estar" detrás del espejo. El espejo sí puede reflejar la luz de un objeto y recogerse esta sobre una pantalla, pero esto no es lo que queremos decir cuando afirmamos que la imagen virtual no se recoge sobre una pantalla. El sistema óptico del ojo es el que recoge los rayos divergentes del espejo y el cerebro interpreta como procedentes de detrás del espejo (justo donde se cortan sus prolongaciones)La imagen formada es:simétrica, porque aparentemente está a la misma distancia del espejovirtual, porque se ve como si estuviera dentro del espejo, no se puede formar sobre una pantalla pero puede ser vista cuando la enfocamos con los ojos. del mismo tamaño que el objeto.derecha, porque conserva la misma orientación que el objeto.
Cuando la luz llega a la superficie de un cuerpo, parte de la luz se refleja y parte entra en el cuerpo donde puede ser absorbida o transmitida, absorbiéndose siempre una parte de ella mientras lo atraviesa (ej. vidrio).
La cantidad de luz reflejada por un cuerpo depende de:
-
La naturaleza de la superficie (composición, estructura, densidad, color, entre otras)
-
La textura de la superficie (plana, rugosa, regular, irregular, opaca, pulida , etc.)
-
La longitud de onda de la luz, y de si está o no polarizada.
-
El ángulo de incidencia de la luz sobre la superficie.
La reflexión de la luz se puede realizar de dos maneras: reflexión irregular o difusa y reflexión regular o especular.
Reflexión regular o especular:Tiene lugar cuando los rayos de luz inciden sobre una superficie lisa. Algunos metales como la plata y el aluminio absorben poco la luz blanca y si construimos con ellos láminas metálicas muy pulimentadas podemos lograr que reflejen la luz de tal manera que los rayos reflejados se vean con una intensidad comparable a la de los rayos incidentes. A estas superficies les llamamos espejos y pueden ser planos o curvos. Hoy en día los espejos se construyen de vidrio, pero en la antigüedad los primeros espejos eran de metal.La física estudia las leyes de la formación de imágenes en los espejos planos. ¿Quieres conocerlas?Deslumbramiento
|
De los focos luminosos sale la luz en todas las direcciones. Sale radialmente, como si el foco de luz fuera el centro de una esfera y los rayos sus radios. Cada dirección de propagación se idealiza y se le asigna un único rayo. En la realidad, del foco sale un paquete de rayos paralelos que llamamos haz. Este haz es una onda electromagnética y dentro de ella lleva fotones que contienen energía.
|
Cuando los rayos del haz están lejos del foco se puede considerar que son paralelos entre sí y que, para pequeños recorridos, a esa gran distancia del foco, la separación entre el principio y el fin de ese trozo de rayo es "inapreciable".
espejos convexos
Se produce una situación en la que la imagen es virtual, derecha y más pequeña que el objeto
Observa que:
Los rayos reflejados (que son los que transportan la energía) no convergen en ningún punto, rebotan en el espejo y divergen, por lo tanto no pueden formar una imagen sobre una pantalla.
Prolongando esos rayos por detrás del espejo podemos saber donde se forma la imagen virtual.
Espejos concavos
La construcción de imágenes es muy sencilla si se utilizan los rayos principales:
- Rayo paralelo: Rayo paralelo al eje óptico que parte de la parte superior del objeto. Después de refractarse pasa por el foco imagen.
- Rayo focal: Rayo que parte de la parte superior del objeto y pasa por el foco objeto, con lo cual se refracta de manera que sale paralelo . Después de refractarse pasa por el foco imagen.
- Rayo radial: Rayo que parte de la parte superior del objeto y está dirigido hacia el centro de curvatura del dioptrio. Este rayo no se refracta y continúa en la mismas dirección ya que el ángulo de incidencia es igual a cero.
Hay que distinguir entre los espejos cóncavos y los convexos:
espejos concavos:
-
Objeto situado a la izquierda del centro de curvatura. La imagen es real, invertida y situada entre el centro y el foco. Su tamaño es menor que el objeto.
-
Objeto situado en el centro de curvatura. La imagen es real, invertida y situada en el mismo punto. Su tamaño igual que el objeto.
-
Objeto situado entre el centro de curvatura y el foco. La imagen es real, invertida y situada a la izquierda del centro de curvatura. Su tamaño es mayor que el objeto.
-
Objeto situado en el foco del espejo. Los rayos reflejados son paralelos y la imagen se forma en el infinito.
-
Objeto situado a la derecha del foco. La imagen es virtual, y conserva su orientación. Su tamaño es mayor que el objeto.
|
a) Objeto situado a la izquierda del centro de curvatura. La imagen es real, invertida y situada entre el centro y el foco. Su tamaño es menor que el objeto. |
b) Objeto situado en el centro de curvatura. La imagen es real, invertida y situada en el mismo punto. Su tamaño igual que el objeto. |
c) Objeto situado entre el centro de curvatura y el foco. La imagen es real, invertida y situada a la izquierda del centro de curvatura. Su tamaño es mayor que el objeto. |
d) Objeto situado en el foco del espejo. Los rayos reflejados son paralelos y la imagen se forma en el infinito. |
|
e) Objeto situado a la derecha del foco. La imagen es virtual, y conserva su orientación. Su tamaño es mayor que el objeto |
aplicaciones de la refraccion
Es el cambio de dirección que experimenta un rayo de luz cuando pasa de un medio transparente a otro también transparente. Este cambio de dirección está originado por la distinta velocidad de la luz en cada medio.
ÁNGULO DE INCIDENCIA Y ÁNGULO DE REFRACCIÓN
Se llama ángulo de incidencia -i- el formado por el rayo incidente y la normal. La normal es una recta imaginaria perpendicular a la superficie de separación de los dos medios en el punto de contacto del rayo.
El ángulo de refracción -r'- es el formado por el rayo refractado y la normal.
Se llama índice de refracción absoluto "n" de un medio transparente al cociente entre la velocidad de la luz en el vacío ,"c", y la velocidad que tiene la luz en ese medio, "v". El valor de "n" es siempre adimensional y mayor que la unidad, es una constante característica de cada medio: n = c/v.
Se puede establecer una relación entre los índices de los dos medios n2 y n1. En el applet de esta práctica se manejan estas relaciones:
Substancias |
Aire |
Agua |
Plexiglás |
Diamante |
Índices de refracción |
1.00029 |
1.333 |
1.51 |
2.417 |
material |
aire |
vapor de agua |
agua dulce |
agua de mar |
aluminio |
Velocidad del sonido (m/s) |
331 |
401 |
1493 |
1513 |
5104 |
REFRACCIÓN: LEYES
Un rayo se refracta (cambia de dirección) cuando pasa de un medio a otro en el que viaja con distinta velocidad. En la refracción se cumplen las siguientes leyes:
1.- El rayo incidente, el rayo refractado y la normal están en un mismo plano.
|
2.- Se cumple la ley de Snell:
|
y teniendo en cuenta los valores de los índices de refracción resulta:
n1sen i = n2 sen r.
Cuando la luz se refracta cambia de dirección porque se propaga con distinta velocidad en el nuevo medio. Como la frecuencia de la vibración no varía al pasar de un medio a otro, lo que cambia es la longitud de onda de la luz como consecuencia del cambio de velocidad.
La onda al refractarse cambia su longitud de onda:
e = v·t
que equivale a l = v ·T = v / n
Un rayo incidente cambia más o menos de dirección según el ángulo con que incide y según la relación de los índices de refracción de los medios por los que se mueve.
rama de la fisica que estudia todo lo relacionado con las ondas sonoras .
velocidad del sonido en dieferentes medios:
medio
|
temperatura
|
velocidad
|
aire
|
0C
|
331.7 m/s
|
oxigeno
|
0 C
|
317 m/s
|
agua
|
15 C
|
1450 m/s
|
acero
|
20 C
|
5130 m/s
|
caucho
|
0 C
|
54 m/s
|
aluminio
|
0C
|
5100 m/s
|
Las ondas sonoras son ondas mecánicas longitudinales: mecánicas porque necesitan un medio material para su propagación y longitudinales porque las partículas del medio actúan en la misma dirección en la que se propaga la onda. Ej: Si hacemos el vacío en una campana de vidrio en la que hay un despertador sonando, a medida que va saliendo el aire el sonido se va apagando hasta que desaparece del todo.
Pueden propagarse en medios sólidos, líquidos y gaseosos.
La propagación de una onda sonora consiste en sucesivas compresiones y dilataciones del medio de propagación, producidas por un foco en movimiento vibratorio. Al paso de la onda el medio experimenta variaciones periódicas de presión. Ej: Si tenemos una regla metálica e inmovilizo un extremo con un tornillo de mordaza. Haz oscila la regla. Al principio puede que no se observe ningún sonido pero si vas acortando la regla si. Ello es debido a que la regla compone la copa de aire que está en contacto con ella y hace que aumente la presión, mientras que la capa de aire que está en el otro lado se enrarece (disminuye su presión). El movimiento de vaivén de la regla hace que las compresiones y enrarecimientos del aire se sucedan de forma alternada en el tiempo y se propaguen en el medio. Son una onda mecánica longitudinal.
Llamamos sonido a la propagación de la vibración de un cuerpo elástico en un medio material. Requiere fuente emisora de ondas sonoras, un medio transmisor, y un receptor o detector de sonidos.
Diremos que una onda mecánica longitudinal es sonora cuando la percibimos como sonido a través de los oídos. Esto ocurre cuando la frecuencia de oscilación está entre 16 y 20.000 Hz (muchas personas comienzan a no oír a partir de 15.000 Hz).
Las frecuencias más bajas que las audibles se llaman infrasonidos, y a las ondas que las producen ondas infrasónicas. Las frecuencias más altas que las audibles se llaman ultrasonidos y las ondas que las producen ondas ultrasónicas.
Velocidad de propagación del sonido
La velocidad a la que se propaga el sonido no depende de su intensidad o cualidades, sino únicamente de las propiedades del medio.
El sonido se propaga con mayor velocidad en los medios más rígidos, por lo que la velocidad de propagación es mayor en los sólidos que en líquidos y gases.
Cualidades del sonido
Intensidad: Sensación asociada a la forma en la que recibe el sonido el ser humano. Los sonidos pueden clasificarse en fuertes o débiles, según su intensidad sea elevada o baja. El oído humano puede detectar sonidos cuando la I es de al menos 10-12 W/m². Sonidos con intensidad igual o superior a 1W/m² son audibles, pero provocan dolor en los oídos.
- Tono o altura: de un sonido indica si este es alto (agudo, muchas vibraciones por segundo) como el de un violín o bajo (grave, pocas vibraciones por segundo) como el de un tambor. Cuanto más baja sea la frecuencia más bajo será el tono y viceversa.
- Timbre: Permite distinguir entre dos sonidos en los que la intensidad y la frecuencia son iguales, pero que han sido emitidos por focos distintos. Normalmente, los sonidos no son puros, es decir, las ondas no son perfectamente sinusoidales sino que el resultado de varios movimientos periódicos superpuestos a la onda fundamental, que se denominan armónicos o sobretonos. Así, cada sonido procedente de un instrumento musical o persona es una onda compuesta y tiene unas características especificas que lo diferencian de las demás. El timbre depende de la forma de la onda
Tono/Frecuencia
Aunque entre los dos términos exista una muy estrecha relación, no se refieren al mismo fenómeno.
El tono es una magnitud subjetiva y se refiere a la altura o gravedad de un sonido.
Sin enbargo, la frecuencia es una magnitud objetiva y mensurable referida a formas de onda periódicas.
El tono de un sonido aumenta con la frecuencia, pero no en la misma medida. Con la frecuencia lo que medimos es el número de vibraciones. Su unidad de medida es el herzio (Hz). Para expresar una frecuencia lo hacemos refiriéndonos a vibraciones por segundo. Así un frecuencia de 1 Herzio es lo mismo que decir que el sonido tiene una vibración por segundo (por cierto, un sonido de esta frecuencia sería imposible de percibir por el oido humano).
Muchas veces en aparatos relacionados con el sonido suele aparecer una gráfica que expresa su respuesta a determinadas frecuencias. Si en esta gráfica vemos una línea recta significará que todas las frecuencias son manipuladas del mismo modo. Si la curva cae en determinadas frecuencias nos estará comunicando que determinadas frecuencias las manipula más debilmente.
Timbre y Frecuencia Armónica
El timbre es la cualidad gracias a la cual podemos diferenciar el sonido de un piano de el de una flauta aunque estén interpretando la misma nota, es decir: aunque dos instrumentos emitan un sonido con la misma frecuencia podemos diferenciarlos gracias a su timbre característico.
Este fenómeno es debido a que un sonido no esta formado sólo de una frecuenca, sino por la suma de otras que son múltiplos de la fundamental. Estas otras frecuencias varían en intensidad y son llamadas armónicos. La proporción e intensidad de estos armónicos son diferentes en cada instrumentos y es por ello que podemos diferenciar sus sonidos.
Jean Foirier demostró matemáticamente que toda función periodica no senoidal puede ser descompuesta en una serie de funciones senoidales. Las senoidales carecen de armónicos, por lo cual podemos considerarlas puras. Este modo de descomponer una señal es conocido como análisis de Fourier.
Si a una señal se le van añadiendo armónicos, la forma de onda irá variando pero su frecuencia fundamental permanecerá inalterada. Por lo tanto vemos que el timbre varía en razón de los armónicos mientras que la frecuencia se mantiene.
Las amplitudes relativas de cada armónico varían en función de la forma de onda, siendo el de mayor amplitud el que se considera fundamental.
En el gráfico adjunto vemos una instatánea de la proporción de armónicos de un sonido.
Si a una onda pura, una senoidal, le añadimos sólo armónicos impares (3f, 5f, 7f, .....Nf) estaremos transformándola cada vez más en una onda cudrada. Llegados a los 21 armónicos habremos logrado una forma de onda razonablemente cuadrada.
Intensidad y Sonoridad.
Frente a las presiones sonoras el oido alcanza a soportar desde 2 * 10E-4 bar (umbral auditivo) hasta los 200 bar (umbral del dolor). Este es un rango muy amplio, para hacernos una idea sólo hay que pensar que el sonido de un rifle produce una presión sonora 100.000.000 de veces mayor que una hoja seca que cae de un árbol.
La intensidad es una magnitud física, por definición, es la energía sonora transportada por unidad de tiempo y que atraviesa un área perpendicular a la dirección de propagación. Más concretamente se refiere a la potencia acústica por unidad de superficie y se expresa en W/cm2
La sensación subjetiva de la intensidad se define como "sonoridad" y depende de la frecuencia, ancho de banda y duración del sonido.
Según Fechner y Weber la sensación subjetiva de la intensidad es proporcional al algoritmo de la intensidad según la forma:
n = 10 log I/I0 |
• n es el nivel de la sonoridad en decibelios (db). |
• I0 es el valor de la intensidad umbral que percibe el oido humano, que es de 10 -10 W/cm2, equivalente a 2 * 104 bar de presión sonora. |
Dado que la sonoridad define un fenómeno subjetivo de gran amplitud, con unos valores extremos muy alejados, es necesario utilizar una unidad más manejable y objetiva. Para ello se utiliza una escala comprimida, logarítmica en lugar de lineal. Las cantidad varían en una relación de 1:100.000.000 (1:10E6), es por ello que se utiliza una escala logarítmica, siendo la unidad de dicha escala el Belio.
El Belio resulta se una unidad demasiado grande en le práctica por lo que habitualmente se utiliza la décima parte, el decibelio (db).
El decibelio se utiliza como referencia, está referido a un nivel de referencia predeterminado. Se utiliza para expresar ganancias o relaciones de potencia.
db = 10 log Po/Pi |
• Pi = Potencia de Entrada |
• Po = Potencia de Salida. |
En acústica se emplea el db para medir niveles de presión sonora referidos a un nivel definido Ps. Entonces se define el nivel de presión sonora P como el número de decibelios que P se halla por encima de Ps. El nivel de referencia de presión acústica Ps adoptado universalmente es el correspondiente al umbral de audición humano, es decir, 2 * 10E-4 bar, equivalente a 0db SPL (Sound Pressure Level o Nivel de Presión Sonora).
Con todos estos datos podemos crear una tabla aproximada para ver la magnitud de todos estos valores.
|
Estimación en db |
Estudio de grabación vacío. |
0 db |
Murmullo a tres metros. |
10 db |
Paso de las hojas de un libro |
10 db |
Susurro a un metro |
20 db |
Calle sin tráfico en zona residencial |
30 db |
Dormitorio tranquilo de día |
25 db |
Conversación a tres metros |
45 db |
Orquesta de cuerda y viento |
60 db |
Orquesta de metales |
70 db |
Despertador a 40 cm |
80 db |
Calle ruidosa con mucho tráfico |
90 db |
Fábrica industrial ruidosa |
100 db |
Umbral del dolor |
120 db |
Avión a reacción a 200m |
140 db |
Cohete espacial a unos 3.000m |
200 db |
consiste en la variacion que experimenta la frecuencia percibida por un observador con relacion a la pocision de un fuente sonora de luz.
¿ Has notado cómo el tono de las sirenas de las ambulancias, de los bomberos o de la policía, cambia a medida que el auto se nos acerca?. La frecuencia es mayor a medida que el auto se nos acerca, luego, cambia súbitamente a una frecuencia menor a medida que se aleja. Este fenómeno es conocido como el Efecto Doppler. (La frecuencia es el número de vibraciones completas por segundo medidas en una posición fija)
En este dibujo se puede ilustrar este efecto. La fuente sonora se mueve hacia la derecha, con una cierta velocidad, emitiendo ondas que se propagan en círculos centrados en la posición de la fuente (la persona que va caminando en sentido contrario) en el momento que se generan las ondas.
La frecuencia de la fuente sonora no cambia, pero cuando la fuente se acerca hacia el detector de sonidos, más ondas se acumulan entre ellos. La longitud de onda se acorta. Puesto que la velocidad no cambia, la frecuencia del sonido detectado se aumenta. Cuando la fuente se aleja del detector (de la persona), la longitud de onda aumenta y la frecuencia detectada es menor. El efecto Doppler también se presenta si la fuente se encuentra estacionaria, y el detector está en movimiento.
Imagina un insecto que agita las patas mientras flota en medio de un charco tranquilo. Supón que el insecto no avanza, sino que sólo remueve el agua en una posición fija. Las crestas de las ondas que el insecto produce son círculos concéntricos porque la rapidez de las ondas es igual en todas direcciones. Si el insecto sube y baja en el agua con una frecuencia constante, la distancia entre dos crestas sucesivas (la longitud de onda) es la misma para todas las ondas.
Supón ahora que el insecto se desplaza en el agua con una rapidez menor que la rapidez de la onda. El insecto persigue en efecto una parte de las crestas que produce. El patrón ondulatorio se deforma y deja de ser concéntrico. El centro de la cresta exterior se formó cuando el insecto estaba en el centro de ese círculo. El centro de la cresta inmediata posterior se formó cuando el insecto estaba en el centro de ese círculo, y así sucesivamente. Los centros de las crestas circulares se desplazan en la misma dirección que el insecto. Aunque el insecto mantiene la misma frecuencia inicial de oscilación, un observador situado en el punto B percibirá las crestas más a menudo. El observador detectaría una frecuencia mayor. Esto se debe a que las crestas sucesivas deben recorre una distancia cada vez menor y, por tanto, llegan a B con mayor frecuencia que si el insecto no avanzase hacia B.
Ahora bien, un observador situado en el punto A percibe una frecuencia menor porque las crestas se suceden a intervalos de tiempo mayores. Debido al movimiento del insecto, cada cresta tiene que recorrer una distancia mayor que la anterior para llegar a A. Este cambio de frecuencia debido al movimiento de la fuente (o del receptor) se conoce como efecto Doppler. Cuanto mayor es la rapidez de la fuente, más grande es el efecto Doppler.
El efecto Doppler se hace patente cuando un auto pasa junto a ti haciendo sonar la bocina. Cuando el auto se aproxima, el tono es más alto que lo normal (esto es, más alto en la escala musical). Esto se debe a que las crestas de las ondas sonoras llegan a ti con mayor frecuencia. Cuando el auto pasa y se aleja, el sonido se hace más grave porque las crestas de las ondas llegan a ti con menor frecuencia.
La luz también está sujeta al efecto Doppler. Cuando una fuente de luz se aproxima aumenta la frecuencia medida, y cuando la fuente se aleja disminuye su frecuencia. El aumento de frecuencia se conoce como desplazamiento hacia el azul, porque el incremento se produce hacia el extremo de altas frecuencias, o azul, del espectro de la luz visible. Una disminución de la frecuencia se describe como un desplazamiento hacia el rojo, en referencia al extremo de bajas frecuencias, o rojo, del espectro
Aplicaciones del Efecto Doppler:
El efecto Doppler posee muchas aplicaciones. Los detectores de radar lo utilizan para medir la rapidez de los automóviles y de las pelotas en varios deportes.
Los astrónomos utilizan el efecto Doppler de la luz de galaxias distantes para medir su velocidad y deducir su distancia.
Los médicos usan fuentes de ultrasonido para detectar las palpitaciones del corazón de un feto; los murciélagos lo emplean para detectar y cazar a un insecto en pleno vuelo. Cuando el insecto se mueve más rápidamente que el murciélago, la frecuencia reflejada es menor, pero si el murciélago se está acercando al insecto, la frecuencia reflejada es mayor.
La electrostática es la rama de la física que estudia los fenómenos eléctricos producidos por distribuciones de cargas estáticas, esto es, el campo electrostático de un cuerpo cargado.
Históricamente, la electrostática fue la rama del electromagnetismo que primero se desarrolló. Con la postulación de la Ley de Coulomb fue descrita y utilizada en experimentos de laboratorios a partir del siglo XVII, y ya en la segunda mitad del siglo XIX las leyes de Maxwell concluyeron definitivamente su estudio y explicación permitiendo demostrar cómo las leyes de la electrostática y las leyes que gobernaban los fenómenos magnéticos pueden ser estudiados en el mismo marco teórico denominado electromagnetismo.
La existencia del fenómeno electrostático es bien conocido desde la antigüedad, existen numerosos ejemplos ilustrativos que hoy forma parte de la enseñanza moderna; como el de comprobar como ciertos materiales se cargan de electricidad por simple frotadura y atraen, por ejemplo, pequeños trozos de papel o pelo a un globo que previamente se ha frotado con un paño seco.
1.- Ley de Coulomb.
Una manifestación habitual de la electricidad es la fuerza de atracción o repulsión entre dos cuerpos estacionarios que, de acuerdo con el principio de acción y reacción, ejercen la misma fuerza eléctrica uno sobre otro. La carga eléctrica de cada cuerpo puede medirse en culombios. La fuerza entre dos partículas con cargas q1 y q2 puede calcularse a partir de la ley de Coulomb
Según la cual la fuerza es proporcional al producto de las cargas dividido entre el cuadrado de la distancia que las separa. La constante de proporcionalidad K depende del medio que rodea a las cargas.
2.- Expresión matemática. La ley de Coulomb
Mediante una balanza de torsión, Coulomb encontró que la fuerza de atracción o repulsión entre dos cargas puntuales (cuerpos cargados cuyas dimensiones son despreciables comparadas con la distancia r que las separa) es inversamente proporcional al cuadrado de la distancia que las separa.
El valor de la constante de proporcionalidad depende de las unidades en las que se exprese F, q, q’ y r. En el Sistema Internacional de Unidades de Medida vale 9·10-9 Nm2/C2.
Obsérvese que la ley de Coulomb tiene la misma forma funcional que la ley de la Gravitación Universal
|
|
El concepto físico de campo
Las cargas eléctricas no precisan de ningún medio material para ejercer su influencia sobre otras, de ahí que las fuerzas eléctricas sean consideradas fuerzas de acción a distancia. Cuando en la naturaleza se da una situación de este estilo, se recurre a la idea de campo para facilitar la descripción en términos físicos de la influencia que uno o más cuerpos ejercen sobre el espacio que les rodea.
La noción física de campo se corresponde con la de un espacio dotado de propiedades medibles. En el caso de que se trate de un campo de fuerzas éste viene a ser aquella región del espacio en donde se dejan sentir los efectos de fuerzas a distancia. Así, la influencia gravitatoria sobre el espacio que rodea la Tierra se hace visible cuando en cualquiera de sus puntos se sitúa, a modo de detector, un cuerpo de prueba y se mide su peso, es decir, la fuerza con que la Tierra lo atrae. Dicha influencia gravitatoria se conoce como campo gravitatorio terrestre. De un modo análogo la física introduce la noción de campo magnético y también la de campo eléctrico o electrostático.
El campo eléctrico
El campo eléctrico asociado a una carga aislada o a un conjunto de cargas es aquella región del espacio en donde se dejan sentir sus efectos. Así, si en un punto cualquiera del espacio en donde está definido un campo eléctrico se coloca una carga de prueba o carga testigo, se observará la aparición de fuerzas eléctricas, es decir, de atracciones o de repulsiones sobre ella.
¿Cómo se define el vector intensidad de campo eléctrico?
La fuerza eléctrica que en un punto cualquiera del campo se ejerce sobre la carga unidad positiva, tomada como elemento de comparación, recibe el nombre de intensidad del campo eléctrico y se representa por la letra E. Por tratarse de una fuerza la intensidad del campo eléctrico es una magnitud vectorial que viene definida por su módulo E y por su dirección y sentido. En lo que sigue se considerarán por separado ambos aspectos del campo E.
¿Cuál es su expresión matemática?
La expresión del módulo de la intensidad de campo E puede obtenerse fácilmente para el caso sencillo del campo eléctrico creado por una carga puntual Q sin más que combinar la ley de Coulomb con la definición de E. La fuerza que Q ejercería sobre una carga unidad positiva 1+ en un punto genérico P distante r de la carga central Q viene dada, de acuerdo con la ley de Coulomb, pero aquélla es precisamente la definición de E y, por tanto, ésta será también su expresión matemática
Puesto que se trata de una fuerza electrostática estará aplicada en P, dirigida a lo largo de la recta que une la carga central Q y el punto genérico P, en donde se sitúa la carga unidad, y su sentido será atractivo o repulsivo según Q sea negativa o positiva respectivamente.
Si la carga testigo es distinta de la unidad, es posible no obstante determinar el valor de la fuerza por unidad de carga en la forma:
Donde F es la fuerza calculada mediante la ley de Coulomb entre la carga central Q y la carga de prueba o testigo q empleada como elemento detector del campo. Es decir:
E=KQq/rª /=KQ/rª
expresión idéntica a la (9.2).
A partir del valor de E debido a Q en un punto P y de la carga q situada en él, es posible determinar la fuerza F en la forma
F = q · E (9.4)
Expresión que indica que la fuerza entre Q y q es igual a q veces el valor de la intensidad de campo E en el punto P.
Esta forma de describir las fuerzas del campo y su variación con la posición hace más sencillos los cálculos, particularmente cuando se ha de trabajar con campos debidos a muchas cargas.
La unidad de intensidad de campo E es el cociente entre la unidad de fuerza y la unidad de carga; en el SI equivale, por tanto, al newton (N)/coulomb (C). |
|
|
|
|
|
|
Hoy habia 5 visitantes (6 clics a subpáginas) ¡Aqui en esta página! |